Spectral analysis of very hot H -deficient [WCE]-type central stars of planetary nebulae

Graziela R. Kellern

Colaborators: Luciand Bianchi² and Weller J. Maciel

1/IAG/Universidade de São Paulo
2 The Johns Hopkinsuniversity
his presentation is organized as follows:

- Introduction
- Central Stars of Planetary Nebulae
- Stellar Winds
- Evolutionary Phase
- Model Grid
- The CMFGEN Code
- [WC] and PG1159 Grid
- Spectral Analysis
- NGC 6905, NGC 5189, NGC 2867.

Pb 6, and Sand 3

Introduction

\diamond They are Hot - T_{*} between $20-200$ kK
Low Mass - M_{*} around $0.6 \mathrm{M}_{\odot}$
Surrounded by a Planetary Nebula

\diamond Present Stellar Winds - Radiativelly Driven

- Stellar Wind

 are continuous processes

Beta velocity law:

$$
\vee_{\infty} \equiv \text { Terminal Velocity }
$$

Mass-loss rate: MEstarn

- Evolutionary Phase

- Evolutionary Phase

- Evolutionary Phase

- Evolutionary Phase

Some famous classes of $\underline{\mathrm{H} \text {-deficient CSPNe are: }}$

[WC] - Spectra similar to massive Wolf-Rayet stars;
-Strong carbon and helium emission Lines;
Are divided into early ([WCE]) and late type ([WCL]) objects.
PG1159 - Occupy the region at the top of the WD cooling track;

- Show absorption lines of highly ionized He, C, O;

Show UV wind lines much weaker than the ones seen in [WC] stars;
[WC]-PG1159 - Are believed to be transition objects between the two other classes.

- Evolutionary Phase

Figure 3. Comparison between Pop.I Wolf-Rayet stars and central stars with late-type WC spectra. Wavelengths in angstrom.
Hamann 1996 Ap\&SS 238, 31

- Evolutionary Phase [WC] X PG1159

C IV $\lambda \lambda 1548.2,1550.8 \AA$ line

Figure 6. Central stars of Wolf-Rayet type in the $\lg g-\lg T_{*}$-diagram. [WCL], [WCE] and [WC]PG 1159 subtypes are represented by squares, triangles and circles, respectively. Shaded diamonds indicate "normal" PG 1159 stars without strong mass-loss (after Dreizler et al. 1995). The tracks for post-AGB evolution taken from Schönberner (1983) or Wood \& Faulkner (1986) (labels: mass in M_{\odot}) and are only shown for rough comparison; they are not really adequate for the considered objects, as they predict normal surface abundances.

AGB $\rightarrow[\mathrm{WCL}] \rightarrow[\mathrm{WCE}] \rightarrow[\mathrm{WC}]-\mathrm{PG} 1159 \rightarrow \mathrm{PG} 1159 \rightarrow$ WD

Hamann 1996 Ap\&SS 238, 31

Support for this overall scenario comes from

1)Abundance patterns;
2)Proximity in evolutionary tracks;
3)post-AGB stars have been observed to re-expand and re-join the AGB, and afterwards, become a hot H -deficient CSPNe;
4)The nebulae around H -rich and [WC] and PG1159 stars are very similar and late thermal pulses happen randomly to about 20% of all post-AGB stars.

Many open questions lead to claims that the born again scenario may not be the only one forming these stars and invoking complicated close binary scenarios.
1)[WC] PN should always be too large for the position of the star on the HR diagram in comparison with a normal CS, but it is not so.
2) Recent estimates say more than 30% of CS are H -poor, while born again scenario predict at most 25%.
3)Weird abundance H -poor ejecta in objects thought to have suffered a born again scenario (oxygen-neon-magnesium Novae).
4)Frequency of the [WC] central stars in different environments;
5)Too many [WCL] central stars relative to the [WCE] and PG1159 stars.
6)Different C/He mass ratios between [WCE] and [WCL] stars

In this work, we:

Keller et al. 2011, MNRAS, 418, 705 :
Calculated a grid of models proper to the analysis of H poor CSPNe, covering Far-UV, UV, optical, and IR.
Δ Made the grids available on-line at
http://dolomiti.pha.jhu.edu/planetarynebulae.html
Δ Performed a differential analysis of the grid models to determine the best line diagnostics of stellar parameters.

Keller et al. 2014, MNRAS, 442, 1379:
©Used these results to perform a uniform and systematic analysis of UV and far-UV spectra of 5 [WCE] central stars.

Model Grids

- Non-LTE; $\sqrt{ }$
- Expanding atmosphere;
- Line blanketing; $\sqrt{ }$
- Wind clumping; $\sqrt{ }$
\checkmark Does not solve the dynamical \boldsymbol{X} equations of the wind.

It requires the mass-loss rate and the velocity law to be supplied. In this work: with $\beta=1$;

* The mass-loss rate is a free parameter.
[WC] grid $\rightarrow 199$ models
PG1159 grid $\rightarrow 160$ models
Models vary in L, T, logg, $d M / d t$, and V_{∞}.

Tracks: Miller Bertolami and Althaus (2006)

Differential Analysis of Grid Models

We performed a differential study, showing the predicted impact of parameter variation on strengths and shapes of line profiles.

We determined the best line diagnostics of $\mathrm{dM} / \mathrm{dt}$ and T_{*}.

Spectral Analyses

Object	$\mathrm{v}_{\text {rad }}\left[\mathrm{km} \mathrm{s}^{-} 1\right]$	Dist. $[\mathrm{kpc}]$	Nebular Diam. [arcsec]	$\mathrm{v}_{\text {exp }}\left[\mathrm{km} \mathrm{s}{ }^{-1]}\right.$	Shape
NGC 6905	-8.4^{a}	$1.73^{\mathrm{e}} ; 1.75^{\mathrm{f}} ; 1.80^{\mathrm{g}}$	$43.3 \times 35.6^{\mathrm{d}}$	43.5^{a}	Elliptical
NGC 5189	-9.2^{a}	$0.54^{\mathrm{e}} ; 0.55^{\mathrm{f}} ; 0.70^{\mathrm{g}}$	$163.4 \times 108.2^{\mathrm{d}}$	36.0^{a}	Quadrupolar
Pb 6	56.0^{b}	$4.38^{\mathrm{e}} ; 4.42^{\mathrm{f}} ; 4.00^{\mathrm{g}}$	5.5^{e}	$?$	Unclassified
NGC 2867	14.4^{b}	$1.84^{\mathrm{e}} ; 2.23^{\mathrm{f}} ; 1.60^{\mathrm{g}}$	$14.4 \times 13.9^{\mathrm{d}}$	18.9^{a}	Elliptical
Sand 3	-92.5^{c}	$?$	-	-	No detectable nebulosity

${ }^{a}$ Acker et al. (1992); ${ }^{b}$ Peña et al. (2013); ${ }^{c}$ Feibelman (1996b); ${ }^{d}$ Tylenda et al. (2003); ${ }^{e}$ Cahn et al. (1992); ${ }^{f}$ Stanghellini et al. (2008); ${ }^{g}$ Maciel (1984).

Image credits: NGC 6905: Bill Gillispie/Adam Block/NOAO/AURA/NSF; NGC 5189: NASA, ESA and the Hubble

- Targets: FUSE range

Far Ultraviolet Spectroscopic Explorer - $(905-1187 \AA$) - resol. $\sim 0.06 \AA$

Observed

Synthetic

Figure 1. Left panel: FUSE spectra of the [WCE] CSPNe NGC 6905, NGC 5189, Pb 6 and NGC 2867. The numerous narrow absorptions are due to interstellar H_{2}, which affects the blue edge of the Ne VII P-Cygni profile. Right panel: sample synthetic spectra from our model grid, calculated for different values of stellar temperature and two different mass-loss rates (in units of $\mathrm{M}_{\odot} \mathrm{yr}^{-1}$). All models shown adopt $v_{\infty}=2500 \mathrm{~km} \mathrm{~s}^{-1}$ and models of the same temperature adopt the same stellar radius. The observed and synthetic spectra shown were convolved with a Gaussian of $0.2 \AA$ FWHM for clarity.

- Targets: FUSE range

Far Ultraviolet Spectroscopic Explorer - (905-1187 \AA) - resol. $\sim 0.06 \AA$

Figure 1. Left panel: FUSE spectra of the [WCE] CSPNe NGC 6905, NGC 5189, Pb 6 and NGC 2867. The numerous narrow absorptions are due to interstellar H_{2}, which affects the blue edge of the Ne VII P-Cygni profile. Right panel: sample synthetic spectra from our model grid, calculated for different values of stellar temperature and two different mass-loss rates (in units of $\mathrm{M}_{\odot} \mathrm{yr}^{-1}$). All models shown adopt $v_{\infty}=2500 \mathrm{~km} \mathrm{~s}^{-1}$ and models of the same temperature adopt the same stellar radius. The observed and synthetic spectra shown were convolved with a Gaussian of $0.2 \AA$ FWHM for clarity.

- Targets: FUSE range

Far Ultraviolet Spectroscopic Explorer - $(905-1187 \AA$) - resol. $\sim 0.06 \AA$

Observed

Synthetic

Figure 1. Left panel: FUSE spectra of the [WCE] CSPNe NGC 6905, NGC 5189, Pb 6 and NGC 2867. The numerous narrow absorptions are due to interstellar H_{2}, which affects the blue edge of the Ne VII P-Cygni profile. Right panel: sample synthetic spectra from our model grid, calculated for different values of stellar temperature and two different mass-loss rates (in units of $\mathrm{M}_{\odot} \mathrm{yr}^{-1}$). All models shown adopt $v_{\infty}=2500 \mathrm{~km} \mathrm{~s}^{-1}$ and models of the same temperature adopt the same stellar radius. The observed and synthetic spectra shown were convolved with a Gaussian of $0.2 \AA$ FWHM for clarity.

-Targets: STIS and IUE range 1200 - $1730 \AA$ A: HST/STIS - $1.2 \AA$; IUE - $6.0 \AA$

Observed

Synthetic

Figure 2. Left panel: HST/STIS G140L spectra of the [WCE] CSPNe NGC 6905, Pb 6 and Sand 3, and low resolution IUE spectra of NGC 5189 and NGC 2867. The dotted vertical lines indicate the location of emission lines commonly seen in PNe. Feibelman (1996b) identified the structure around $1320 \AA$ as being a nebular $[\mathrm{Mg} \mathrm{V}]$ line in the spectra of Sand 3 . We, however, find evidence of its stellar origin, as we discuss on Section 2. Right panel: sample synthetic spectra from our model grid (same models as in Fig. 1), between 1200 and $1750 \AA$, calculated for different values of stellar temperature and two different mass-loss rates (in units of $\mathrm{M}_{\odot} \mathrm{yr}^{-1}$). The synthetic spectra shown were convolved with a HST/STIS G140L instrumental LSF.

-Targets: STIS and IUE range 1200-1730 \AA : HST/STIS - $1.2 \AA$; IUE - $6.0 \AA$

Observed

Synthetic

Figure 2. Left panel: HST/STIS G140L spectra of the [WCE] CSPNe NGC 6905, Pb 6 and Sand 3, and low resolution IUE spectra of NGC 5189 and NGC 2867. The dotted vertical lines indicate the location of emission lines commonly seen in PNe. Feibelman (1996b) identified the structure around $1320 \AA$ as being a nebular $[\mathrm{Mg} \mathrm{V}]$ line in the spectra of Sand 3 . We, however, find evidence of its stellar origin, as we discuss on Section 2. Right panel: sample synthetic spectra from our model grid (same models as in Fig. 1), between 1200 and $1750 \AA$, calculated for different values of stellar temperature and two different mass-loss rates (in units of $\mathrm{M}_{\odot} \mathrm{yr}^{-1}$). The synthetic spectra shown were convolved with a HST/STIS G140L instrumental LSF.

-Targets: STIS and IUE range 1200-1730 \AA : HST/STIS - $1.2 \AA$; IUE - $6.0 \AA$

Observed

Synthetic

Figure 2. Left panel: HST/STIS G140L spectra of the [WCE] CSPNe NGC 6905, Pb 6 and Sand 3, and low resolution IUE spectra of NGC 5189 and NGC 2867. The dotted vertical lines indicate the location of emission lines commonly seen in PNe. Feibelman (1996b) identified the structure around $1320 \AA$ as being a nebular $[\mathrm{Mg} \mathrm{V}]$ line in the spectra of Sand 3 . We, however, find evidence of its stellar origin, as we discuss on Section 2. Right panel: sample synthetic spectra from our model grid (same models as in Fig. 1), between 1200 and $1750 \AA$, calculated for different values of stellar temperature and two different mass-loss rates (in units of $\mathrm{M}_{\odot} \mathrm{yr}^{-1}$). The synthetic spectra shown were convolved with a HST/STIS G140L instrumental LSF.

-Targets: STIS and IUE range 1200-1730 \AA : HST/STIS - $1.2 \AA$; IUE - $6.0 \AA$

Observed

Synthetic

Figure 2. Left panel: HST/STIS G140L spectra of the [WCE] CSPNe NGC 6905, Pb 6 and Sand 3, and low resolution IUE spectra of NGC 5189 and NGC 2867. The dotted vertical lines indicate the location of emission lines commonly seen in PNe. Feibelman (1996b) identified the structure around $1320 \AA$ as being a nebular $[\mathrm{Mg} \mathrm{V}]$ line in the spectra of Sand 3 . We, however, find evidence of its stellar origin, as we discuss on Section 2. Right panel: sample synthetic spectra from our model grid (same models as in Fig. 1), between 1200 and $1750 \AA$, calculated for different values of stellar temperature and two different mass-loss rates (in units of $\mathrm{M}_{\odot} \mathrm{yr}^{-1}$). The synthetic spectra shown were convolved with a HST/STIS G140L instrumental LSF.

-Targets: STIS and IUE range 1200 - $1730 \AA$ A: HST/STIS - $1.2 \AA$; IUE - $6.0 \AA$

Observed

Synthetic

Figure 2. Left panel: HST/STIS G140L spectra of the [WCE] CSPNe NGC 6905, Pb 6 and Sand 3, and low resolution IUE spectra of NGC 5189 and NGC 2867. The dotted vertical lines indicate the location of emission lines commonly seen in PNe. Feibelman (1996b) identified the structure around $1320 \AA$ as being a nebular $[\mathrm{Mg} \mathrm{V}]$ line in the spectra of Sand 3 . We, however, find evidence of its stellar origin, as we discuss on Section 2. Right panel: sample synthetic spectra from our model grid (same models as in Fig. 1), between 1200 and $1750 \AA$, calculated for different values of stellar temperature and two different mass-loss rates (in units of $\mathrm{M}_{\odot} \mathrm{yr}^{-1}$). The synthetic spectra shown were convolved with a HST/STIS G140L instrumental LSF.

-Targets: STIS and IUE range 1200 - $1730 \AA$ A: HST/STIS - $1.2 \AA$; IUE - $6.0 \AA$

Observed

Synthetic

Figure 2. Left panel: HST/STIS G140L spectra of the [WCE] CSPNe NGC 6905, Pb 6 and Sand 3, and low resolution IUE spectra of NGC 5189 and NGC 2867. The dotted vertical lines indicate the location of emission lines commonly seen in PNe. Feibelman (1996b) identified the structure around $1320 \AA$ as being a nebular $[\mathrm{Mg} \mathrm{V}]$ line in the spectra of Sand 3 . We, however, find evidence of its stellar origin, as we discuss on Section 2. Right panel: sample synthetic spectra from our model grid (same models as in Fig. 1), between 1200 and $1750 \AA$, calculated for different values of stellar temperature and two different mass-loss rates (in units of $\mathrm{M}_{\odot} \mathrm{yr}^{-1}$). The synthetic spectra shown were convolved with a HST/STIS G140L instrumental LSF.

Additional Ions

Best Fit Models

Far-UV FUSE spectra

Best Fit Models

(IUE and HST/STIS spectra)

Interstellar Lyman-a

Results

Table 5. Parameters of our best-fitting models for the sample objects and distance dependent parameters. $X_{H e}, X_{C}, X_{N}, X_{O}$, and $X_{N e}$ are the helium, carbon, nitrogen, oxygen, and neon mass fractions, respectively. For the discussion on the derived parameters and errors, see text. Results by other authors are also shown.

Object	Pb 6		NGC 6905			NGC 5189		Sand 3			NGC 2867	
	t.w.	KH1997a	t.w.	M2007	KH1997a	t.w.	KH1997a	t.w.	KH1997b	BH1982	t.w.	KH1997a
$T_{*}[\mathrm{kK}]$	165	140	150	149.6	141	165	135	150	140	200	165	141
$R_{t}\left[\mathrm{R}_{\odot}\right]$	9.9	4.5	10.7	10.5	3.4	9.9	5.0	9.4	3.0		8.5	4.0
$v_{\infty}[\mathrm{km} / \mathrm{s}]$	2500	3000	2000	1890	1800	2500	3000	2200	2200	2700	2000	1800
$X_{H e}$	0.49	0.617	0.45	0.49	0.60	0.58	0.757	0.28	0.615	0.38	0.60	0.66
X_{C}	0.35	0.24	0.45	0.40	0.25	0.25	0.16	0.55	0.26	0.54	0.25	0.25
X_{O}	0.12	0.14	0.08	0.10	0.15	0.12	0.08	0.08	0.12	0.08	0.10	0.09
X_{N}	0.03	0.003	0.00011	<0.001	0	0.01	0.003	0.07	0.005		$0.01{ }^{\text {b }}$	0
$X_{N e}$	0.01		0.02			0.04		$0.02{ }^{\text {b }}$			0.04	
$\xi_{\text {max }}[\mathrm{km} / \mathrm{s}]$	200		150			200		150			200	
$\mathrm{d}^{\mathrm{c}}[\mathrm{kpc}]$	4.38		1.70			0.55		$0.80{ }^{\text {a }}$			1.84	
distance dependent parameters												
$\mathrm{R}_{*}\left[\mathrm{R}_{\odot}\right]$	0.06		0.09			0.03		$0.12^{\text {a }}$			0.05	
$\log L / L_{\odot}$	3.43		3.56			2.73		$3.84{ }^{\text {a }}$			3.15	
$\log \dot{M}\left[\mathrm{M}_{\odot} \mathrm{yr}^{-1}\right]$	-7.29		-7.21			-7.81		$-6.89^{\text {a }}$			-7.50	

t.w.=this work; KH1997a=Koesterke and Hamann (1997a); KH1997b=Koesterke and Hamann (1997b); M2007=Marcolino et al. (2007b), BH1982=Barlow and Hummer (1982)
${ }^{a}$ Values obtained assuming $\log L / L_{\odot}=3.84$.
${ }^{b}$ Not constrained. Value assumed on the grid models was kept.
${ }^{c}$ Distances from Table 1.

Ions

Table 3. Ion superlevels and levels of the best-fitting final models for the central stars of NGC 6905, Sand 3, Pb 6, NGC 2867, and NGC 5189.

Element	I	II	III	IV	V	VI	VII	VIII	IX	X	XI
He	40,45	22,30	1								
C				49,64	1						
N					13,21	1					
O				29,48 ${ }^{\text {a }}$	58,163	41,47	1				
Ne				45,355 ${ }^{\text {a }}$	37,166	36,202	38,182	24,47	1		
Na						52,452	37,251	72,214	27,71	1	
Mg					43,311	46,444	54,476	1			
Si				22,33	$33,71^{\text {a }}$	$33,98^{\text {a }}$	$1^{\text {a }}$				
P					16,62	1					
S						28,58	1				
Ar						30,205	33,174	57,72	1		
Ca						$47,108^{\text {a }}$	$55,514^{\text {a }}$	54,445 ${ }^{\text {a }}$	$35,367{ }^{\text {a }}$	$31,79^{\text {a }}$	$1^{\text {a }}$
Fe						$44,433{ }^{\text {a }}$	41,252	53,324	52,490	43,210	1
Co							45,1000	50,1217	24,355	1	
Ni							37,308	113,1000	75,1217	1	

Results

Table 5. Parameters of our best-fitting models for the sample objects and distance dependent parameters. $X_{H e}, X_{C}, X_{N}, X_{O}$, and $X_{N e}$ are the helium, carbon, nitrogen, oxygen, and neon mass fractions, respectively. For the discussion on the derived parameters and errors, see text. Results by other authors are also shown.

Object	Pb 6	NGC 6905		NGC 5189			Sand 3		NGC 2867			
	t.w.	KH1997a	t.w.	M2007	KH1997a	t.w.	KH1997a	t.w.	KH1997b	BH1982	t.w.	KH1997a
$T_{*}[\mathrm{kK}]$	165	140	150	149.6	141	165	135	150	140	200	165	141
$R_{t}\left[\mathrm{R}_{\odot}\right]$	9.9	4.5	10.7	10.5	3.4	9.9	5.0	9.4	3.0		8.5	4.0
$v_{\infty}[\mathrm{km} / \mathrm{s}]$	2500	3000	2000	1890	1800	2500	3000	2200	2200	2700	2000	1800
$X_{H e}$	0.49	0.617	0.45	0.49	0.60	0.58	0.757	0.28	0.615	0.38	0.60	0.66
X_{C}	0.35	0.24	0.45	0.40	0.25	0.25	0.16	0.55	0.26	0.54	0.25	0.25
X_{O}	0.12	0.14	0.08	0.10	0.15	0.12	0.08	0.08	0.12	0.08	0.10	0.09
X_{N}	0.03	0.003	0.00011	<0.001	0	0.01	0.003	0.07	0.005		$0.01{ }^{\text {b }}$	0
$X_{N e}$	0.01		0.02			0.04		$0.02{ }^{\text {b }}$			0.04	
$\xi_{\text {max }}[\mathrm{km} / \mathrm{s}]$	200		150			200		150			200	
$\mathrm{d}^{\mathrm{c}}[\mathrm{kpc}]$	4.38		1.70			0.55		$0.80{ }^{\text {a }}$			1.84	
distance dependent parameters												
$\mathrm{R}_{*}\left[\mathrm{R}_{\odot}\right]$	0.06		0.09			0.03		$0.12^{\text {a }}$			0.05	
$\log L / L_{\odot}$	3.43		3.56			2.73		$3.84{ }^{\text {a }}$			3.15	
$\log \dot{M}\left[\mathrm{M}_{\odot} \mathrm{yr}^{-1}\right]$	-7.29		-7.21			-7.81		$-6.89^{\text {a }}$			-7.50	

t.w. $=$ this work; KH1997a=Koesterke and Hamann (1997a); KH1997b=Koesterke and Hamann (1997b); M2007=Marcolino et al. (2007b), BH1982=Barlow and Hummer (1982)
${ }^{a}$ Values obtained assuming $\log L / L_{\odot}=3.84$.
${ }^{b}$ Not constrained. Value assumed on the grid models was kept.
${ }^{c}$ Distances from Table 1.

Results

Table 5. Parameters of our best-fitting models for the sample objects and distance dependent parameters. $X_{H e}, X_{C}, X_{N}, X_{O}$, and $X_{N e}$ are the helium, carbon, nitrogen, oxygen, and neon mass fractions, respectively. For the discussion on the derived parameters and errors, see text. Results by other authors are also shown.

Object	Pb 6		NGC 6905			NGC 5189		Sand 3			NGC 2867	
	t.w.	KH1997a	t.w.	M2007	KH1997a	t.w.	KH1997a	t.w.	KH1997b	BH1982	t.w.	KH1997a
$T_{*}[\mathrm{kK}]$	165	140	150	149.6	141	165	135	150	140	200	165	141
$R_{t}\left[\mathrm{R}_{\odot}\right]$	9.9	4.5	10.7	10.5	3.4	9.9	5.0	9.4	3.0		8.5	4.0
$v_{\infty}[\mathrm{km} / \mathrm{s}]$	2500	3000	2000	1890	1800	2500	3000	2200	2200	2700	2000	1800
$X_{H e}$	0.49	0.617	0.45	0.49	0.60	0.58	0.757	0.28	0.615	0.38	0.60	0.66
X_{C}	0.35	0.24	0.45	0.40	0.25	0.25	0.16	0.55	0.26	0.54	0.25	0.25
X_{O}	0.12	0.14	0.08	0.10	0.15	0.12	0.08	0.08	0.12	0.08	0.10	0.09
X_{N}	0.03	0.003	0.00011	<0.001	0	0.01	0.003	0.07	0.005		$0.01{ }^{\text {b }}$	0
$X_{N e}$	0.01		0.02			0.04		$0.02{ }^{\text {b }}$			0.04	
$\xi_{\text {max }}[\mathrm{km} / \mathrm{s}]$	200		150			200		150			200	
$\mathrm{d}^{\mathrm{c}}[\mathrm{kpc}]$	4.38		1.70			0.55		$0.80{ }^{\text {a }}$			1.84	
distance dependent parameters												
$\mathrm{R}_{*}\left[\mathrm{R}_{\odot}\right]$	0.06		0.09			0.03		$0.12{ }^{\text {a }}$			0.05	
$\log L / L_{\odot}$	3.43		3.56			2.73		$3.84{ }^{\text {a }}$			3.15	
$\log \dot{M}\left[\mathrm{M}_{\odot} \mathrm{yr}^{-1}\right]$	-7.29		-7.21			-7.81		$-6.89^{\text {a }}$			-7.50	

t.w. $=$ this work; KH1997a=Koesterke and Hamann (1997a); KH1997b=Koesterke and Hamann (1997b); M2007=Marcolino et al. (2007b), BH1982=Barlow and Hummer (1982)
${ }^{a}$ Values obtained assuming $\log L / L_{\odot}=3.84$.
${ }^{b}$ Not constrained. Value assumed on the grid models was kept.
${ }^{c}$ Distances from Table 1.

Results

Table 5. Parameters of our best-fitting models for the sample objects and distance dependent parameters. $X_{H e}, X_{C}, X_{N}, X_{O}$, and $X_{N e}$ are the helium, carbon, nitrogen, oxygen, and neon mass fractions, respectively. For the discussion on the derived parameters and errors, see text. Results by other authors are also shown.

Object	Pb 6		NGC 6905			NGC 5189		Sand 3			NGC 2867	
	t.w.	KH1997a	t.w.	M2007	KH1997a	t.w.	KH1997a	t.w.	KH1997b	BH1982	t.w.	KH1997a
$T_{*}[\mathrm{kK}]$	165	140	150	149.6	141	165	135	150	140	200	165	141
$R_{t}\left[\mathrm{R}_{\odot}\right]$	9.9	4.5	10.7	10.5	3.4	9.9	5.0	9.4	3.0		8.5	4.0
$v_{\infty}[\mathrm{km} / \mathrm{s}]$	2500	3000	2000	1890	1800	2500	3000	2200	2200	2700	2000	1800
$X_{H e}$	0.49	0.617	0.45	0.49	0.60	0.58	0.757	0.28	0.615	0.38	0.60	0.66
X_{C}	0.35	0.24	0.45	0.40	0.25	0.25	0.16	0.55	0.26	0.54	0.25	0.25
X_{O}	0.12	0.14	0.08	0.10	0.15	0.12	0.08	0.08	0.12	0.08	0.10	0.09
X_{N}	0.03	0.003	0.00011	<0.001	0	0.01	0.003	0.07	0.005		$0.01{ }^{\text {b }}$	0
$X_{N e}$	0.01		0.02			0.04		$0.02{ }^{\text {b }}$			0.04	
$\xi_{\text {max }}[\mathrm{km} / \mathrm{s}]$	200		150			200		150			200	
$\mathrm{d}^{\mathrm{c}}[\mathrm{kpc}]$	4.38		1.70			0.55		$0.80{ }^{\text {a }}$			1.84	
distance dependent parameters												
$\mathrm{R}_{*}\left[\mathrm{R}_{\odot}\right]$	0.06		0.09			0.03		$0.12{ }^{\text {a }}$			0.05	
$\log L / L_{\odot}$	3.43		3.56			2.73		$3.84{ }^{\text {a }}$			3.15	
$\log \dot{M}\left[\mathrm{M}_{\odot} \mathrm{yr}^{-1}\right]$	-7.29		-7.21			-7.81		$-6.89^{\text {a }}$			-7.50	

t.w. $=$ this work; KH1997a=Koesterke and Hamann (1997a); KH1997b=Koesterke and Hamann (1997b); M2007=Marcolino et al. (2007b), BH1982=Barlow and Hummer (1982)
${ }^{a}$ Values obtained assuming $\log L / L_{\odot}=3.84$.
${ }^{b}$ Not constrained. Value assumed on the grid models was kept.
${ }^{c}$ Distances from Table 1.

Results

Table 5. Parameters of our best-fitting models for the sample objects and distance dependent parameters. $X_{H e}, X_{C}, X_{N}, X_{O}$, and $X_{N e}$ are the helium, carbon, nitrogen, oxygen, and neon mass fractions, respectively. For the discussion on the derived parameters and errors, see text. Results by other authors are also shown.

Object	Pb 6		NGC 6905			NGC 5189		Sand 3			NGC 2867	
	t.w.	KH1997a	t.w.	M2007	KH1997a	t.w.	KH1997a	t.w.	KH1997b	BH1982	t.w.	KH1997a
$T_{*}[\mathrm{kK}]$	165	140	150	149.6	141	165	135	150	140	200	165	141
$R_{t}\left[\mathrm{R}_{\odot}\right]$	9.9	4.5	10.7	10.5	3.4	9.9	5.0	9.4	3.0		8.5	4.0
$v_{\infty}[\mathrm{km} / \mathrm{s}]$	2500	3000	2000	1890	1800	2500	3000	2200	2200	2700	2000	1800
$X_{H e}$	0.49	0.617	0.45	0.49	0.60	0.58	0.757	0.28	0.615	0.38	0.60	0.66
X_{C}	0.35	0.24	0.45	0.40	0.25	0.25	0.16	0.55	0.26	0.54	0.25	0.25
X_{O}	0.12	0.14	0.08	0.10	0.15	0.12	0.08	0.08	0.12	0.08	0.10	0.09
X_{N}	0.03	0.003	0.00011	<0.001	0	0.01	0.003	0.07	0.005		$0.01{ }^{\text {b }}$	0
$X_{N e}$	0.01		0.02			0.04		$0.02{ }^{\text {b }}$			0.04	
	200		150			200		150			200	
$\mathrm{d}^{\mathrm{c}}[\mathrm{kpc}]$	4.38		1.70			0.55		$0.80{ }^{\text {a }}$			1.84	
distance dependent parameters												
$\mathrm{R}_{*}\left[\mathrm{R}_{\odot}\right]$	0.06		0.09			0.03		$0.12^{\text {a }}$			0.05	
$\log L / L_{\odot}$	3.43		3.56			2.73		$3.84{ }^{\text {a }}$			3.15	
$\log \dot{M}\left[\mathrm{M}_{\odot} \mathrm{yr}^{-1}\right]$	-7.29		-7.21			-7.81		$-6.89{ }^{\text {a }}$			-7.50	

t.w. $=$ this work; KH1997a=Koesterke and Hamann (1997a); KH1997b=Koesterke and Hamann (1997b); M2007=Marcolino et al. (2007b), BH1982=Barlow and Hummer (1982)
${ }^{a}$ Values obtained assuming $\log L / L_{\odot}=3.84$.
${ }^{b}$ Not constrained. Value assumed on the grid models was kept.
${ }^{c}$ Distances from Table 1.

Results

Table 5. Parameters of our best-fitting models for the sample objects and distance dependent parameters. $X_{H e}, X_{C}, X_{N}, X_{O}$, and $X_{N e}$ are the helium, carbon, nitrogen, oxygen, and neon mass fractions, respectively. For the discussion on the derived parameters and errors, see text. Results by other authors are also shown.

t.w. $=$ this work; KH1997a=Koesterke and Hamann (1997a); KH1997b=Koesterke and Hamann (1997b); M2007=Marcolino et al. (2007b), BH1982=Barlow and Hummer (1982)
${ }^{a}$ Values obtained assuming $\log L / L_{\odot}=3.84$.
${ }^{b}$ Not constrained. Value assumed on the grid models was kept.
${ }^{c}$ Distances from Table 1.

Results

Table 5. Parameters of our best-fitting models for the sample objects and distance dependent parameters. $X_{H e}, X_{C}, X_{N}, X_{O}$, and $X_{N e}$ are the helium, carbon, nitrogen, oxygen, and neon mass fractions, respectively. For the discussion on the derived parameters and errors, see text. Results by other authors are also shown.

Object	Pb 6		NGC 6905			NGC 5189		Sand 3			NGC 2867	
	t.w.	KH1997a	t.w.	M2007	KH1997a	t.w.	KH1997a	t.w.	KH1997b	BH1982	t.w.	KH1997a
$T_{*}[\mathrm{kK}]$	165	140	150	149.6	141	165	135	150	140	200	165	141
$R_{t}\left[\mathrm{R}_{\odot}\right]$	9.9	4.5	10.7	10.5	3.4	9.9	5.0	9.4	3.0		8.5	4.0
$v_{\infty}[\mathrm{km} / \mathrm{s}]$	2500	3000	2000	1890	1800	2500	3000	2200	2200	2700	2000	1800
$X^{H e}$	0.49	0.617	0.45	0.49	0.60	0.58	0.757	0.28	0.615	0.38	0.60	0.66
X_{C}	0.35	0.24	0.45	0.40	0.25	0.25	0.16	0.55	0.26	0.54	0.25	0.25
X_{O}	0.12	0.14	0.08	0.10	0.15	0.12	0.08	0.08	0.12	0.08	0.10	0.09
X_{N}	0.03	0.003	0.00011	<0.001	0	0.01	0.003	0.07	0.005		$0.01{ }^{\text {b }}$	0
$X_{N e}$	0.01		0.02			0.04		$0.02{ }^{\text {b }}$			0.04	
	200		150			200					200	
$\mathrm{d}^{\mathrm{c}}[\mathrm{kpc}]$	4.38		1.70			0.55		0.80^{a}			1.84	
distance dependent												
$\begin{gathered} \mathrm{R}_{*}\left[\mathrm{R}_{\odot}\right] \\ \log L / L_{\odot} \end{gathered}$	Koesterke and Hamann 1997a,b: $0.19<$ C.He 0.7 for [WCE] stars											
$\log \dot{M}\left[\mathrm{M}_{\odot} \mathrm{yr}^{-1}\right.$	Leuenhagen et al. 1996: C.He typically higher than 1 for [WCL] stars											
$\text { T.W.: C:He =0.42, 0.43, 0.71, 1.0, } 1.96$												

 et al. (2007b), BH1982=Barlow and Hummer (1982)
${ }^{a}$ Values obtained assuming $\log L / L_{\odot}=3.84$.
${ }^{b}$ Not constrained. Value assumed on the grid models was kept.
${ }^{c}$ Distances from Table 1.

Results

Table 5. Parameters of our best-fitting models for the sample objects and distance dependent parameters. $X_{H e}, X_{C}, X_{N}, X_{O}$, and $X_{N e}$ are the helium, carbon, nitrogen, oxygen, and neon mass fractions, respectively. For the discussion on the derived parameters and errors, see text. Results by other authors are also shown.

Object	Pb 6		NGC 6905			NGC 5189		Sand 3			NGC 2867	
	t.w.	KH1997a	t.w.	M2007	KH1997a	t.w.	KH1997a	t.w.	KH1997b	BH1982	t.w.	KH1997a
$T_{*}[\mathrm{kK}]$	165	140	150	149.6	141	165	135	150	140	200	165	141
$R_{t}\left[\mathrm{R}_{\odot}\right]$	9.9	4.5	10.7	10.5	3.4	9.9	5.0	9.4	3.0		8.5	4.0
$v_{\infty}[\mathrm{km} / \mathrm{s}]$	2500	3000	2000	1890	1800	2500	3000	2200	2200	2700	2000	1800
$X_{H e}$	0.49	0.617	0.45	0.49	0.60	0.58	0.757	0.28	0.615	0.38	0.60	0.66
X_{C}	0.35	0.24	0.45	0.40	0.25	0.25	0.16	0.55	0.26	0.54	0.25	0.25
X_{O}	0.12	0.14	0.08	0.10	0.15	0.12	0.08	0.08	0.12	0.08	0.10	0.09
X_{N}	0.03	0.003	0.00011	<0.001	0	0.01	0.003	0.07	0.005		$0.01{ }^{\text {b }}$	0
$X_{N e}$	0.01		0.02			0.04		$0.02{ }^{\text {b }}$			0.04	
	200		150			200		150			200	
$\mathrm{d}^{\mathrm{c}}[\mathrm{kpc}]$	4.38		1.70			0.55		$0.80{ }^{\text {a }}$			1.84	
distance dependent parameters												
$\mathrm{R}_{*}\left[\mathrm{R}_{\odot}\right]$	0.06		0.09			0.03		$0.12^{\text {a }}$			0.05	
$\log L / L_{\odot}$	3.43		3.56			2.73		$3.84{ }^{\text {a }}$			3.15	
$\log \dot{M}\left[\mathrm{M}_{\odot} \mathrm{yr}^{-1}\right]$	-7.29		-7.21			-7.81		$-6.89^{\text {a }}$			-7.50	

t.w. $=$ this work; KH1997a=Koesterke and Hamann (1997a); KH1997b=Koesterke and Hamann (1997b); M2007=Marcolino et al. (2007b), BH1982=Barlow and Hummer (1982)
${ }^{a}$ Values obtained assuming $\log L / L_{\odot}=3.84$.
${ }^{b}$ Not constrained. Value assumed on the grid models was kept.
${ }^{c}$ Distances from Table 1.

Results

Table 5. Parameters of our best-fitting models for the sample objects and distance dependent parameters. $X_{H e}, X_{C}, X_{N}, X_{O}$, and $X_{N e}$ are the helium, carbon, nitrogen, oxygen, and neon mass fractions, respectively. For the discussion on the derived parameters and errors, see text. Results by other authors are also shown.

Object	Pb 6		NGC 6905			NGC 5189		Sand 3			NGC 2867	
	t.w.	KH1997a	t.w.	M2007	KH1997a	t.w.	KH1997a	t.w.	KH1997b	BH1982	t.w.	KH1997a
$T_{*}[\mathrm{kK}]$	165	140	150	149.6	141	165	135	150	140	200	165	141
$R_{t}\left[\mathrm{R}_{\odot}\right]$	9.9	4.5	10.7	10.5	3.4	9.9	5.0	9.4	3.0		8.5	4.0
$v_{\infty}[\mathrm{km} / \mathrm{s}]$	2500	3000	2000	1890	1800	2500	3000	2200	2200	2700	2000	1800
$X_{H e}$	0.49	0.617	0.45	0.49	0.60	0.58	0.757	0.28	0.615	0.38	0.60	0.66
X_{C}	0.35	0.24	0.45	0.40	0.25	0.25	0.16	0.55	0.26	0.54	0.25	0.25
X_{O}	0.12	0.14	0.08	0.10	0.15	0.12	0.08	0.08	0.12	0.08	0.10	0.09
X_{N}	0.03	0.003	0.00011	<0.001	0	0.01	0.003	0.07	0.005		$0.01{ }^{\text {b }}$	0
$X_{N e}$	0.01		0.02			0.04		$0.02{ }^{\text {T }}$			0.04	
$\xi_{\max }[\mathrm{km} / \mathrm{s}]$	200		150			200		150			200	
$\mathrm{d}^{\mathrm{c}}[\mathrm{kpc}]$	4.38		1.70			0.55		$0.80{ }^{\text {a }}$			1.84	
distance dependent parameters												
$\mathrm{R}_{*}\left[\mathrm{R}_{\odot}\right]$	0.06		0.09			0.03		$0.12{ }^{\text {a }}$			0.05	
$\log L / L_{\odot}$	3.43		3.56			2.73		$3.84{ }^{\text {a }}$			3.15	
$\log \dot{M}\left[\mathrm{M}_{\odot} \mathrm{yr}^{-1}\right]$	-7.29		-7.21			-7.81		$-6.89^{\text {a }}$			-7.50	

t.w. $=$ this work; KH1997a=Koesterke and Hamann (1997a); KH1997b=Koesterke and Hamann (1997b); M2007=Marcolino et al. (2007b), BH1982=Barlow and Hummer (1982)
${ }^{a}$ Values obtained assuming $\log L / L_{\odot}=3.84$.
${ }^{b}$ Not constrained. Value assumed on the grid models was kept.
${ }^{c}$ Distances from Table 1.

This Work x Literature: Abundances

This Work x Literature: Abundances

Figure 14. The abundance intervals of PG1159, [WC]-PG1159 and [WC] stars (as found from the literature) are compared to the values determined in this work.

Evolutionary Tracks

Figure 13. HR diagram with evolutionary tracks from Miller Bertolami and Althaus (2006). The open circles correspond to the sample objects. Sand 3 was omitted from it, because, to the best of our knowledge, there is no measurement of its distance in the literature.

Conclusions

Concluding...

We analyzed UV spectra from 5 of the hottest known [WCE]-type CSPNe using our grid of synthetic spectra, calculated with CMFGEN.
\diamond Grids available at

http://dolomiti.pha.jhu.edu/planetarynebulae.html http://www.astro.iag.usp.br/~graziela/GRIDWEB/front.html

We found line blanketing of $\mathrm{Ni}, \mathrm{Co}, \mathrm{Mg}$, and Na to improve the fit of the OV lines in all objects analyzed.
\checkmark We revised up the temperatures for NGC 5189, NGC2867 and Pb 6.
We revised up the values of N abundances.
\checkmark We constrained Ne mass fractions for the first time in [WCE] stars.
C:He mass ratios found by us span a wide range of values: $0.42<$ $\mathrm{C}: \mathrm{He}<1.96$.

References:

Herwig F., 2005, ARA\&A, 43, 435
Hillier, D.J., Miller, D.L., 1998, ApJ, 496, 407
Keller, G. R., Herald, J. E., Bianchi L., Maciel, W. J., Bohlin R. C., 2011, MNRAS, 705
Koesterke, L., Dreizler, S., Rauch, T., 1998, A\&A, 330, 1041
Miller Bertolami, M. M., Althaus, L. G., 2006, A\&A, 454, 845
Stanghellini, L., R. A. Shaw, E. Villaver, 2008, ApJ, 689,194
Werner, K., Rauch, T., Kruk, J.W., 2010, ApJL, 719, L32
Werner, K., Rauch, T., Kruk, J.W., Kurucz, R.L., 2011, A\&A, 531, Al 46

Acknowledgements:

CAPES-0370-09-6, Fapesp-06/58240-3 and 2012/03479-2 grants.
The data presented were obtained from MAST.

